Train Celltypist
TrainCellTypist.Rd
Train celltypist using the data in a seurat object and saves the resulting model
Usage
TrainCellTypist(
seuratObj,
labelField,
modelFile,
minCellsPerClass = 20,
assayName = Seurat::DefaultAssay(seuratObj),
tempFileLocation = NULL,
dropAmbiguousLabelValues = TRUE,
excludedClasses = NULL,
featureInclusionList = NULL,
featureExclusionList = NULL
)
Arguments
- seuratObj
The seurat object
- labelField
The field in seuratObj@meta.data holding the labels for training
- modelFile
The path to save the model
- minCellsPerClass
If provided, any classes (and corresponding cells) with fewer than this many cells will be dropped from the training data
- assayName
The name of the assay to use
- tempFileLocation
The location where temporary files (like the annData version of the seurat object), will be written.
- dropAmbiguousLabelValues
If true, and label value with a comma will be dropped.
- excludedClasses
A vector of labels to discard.
- featureInclusionList
If provided, the input count matrix will be subset to just these features. If used, Seurat::NormalizeData will be re-run.
- featureExclusionList
If provided, the input count matrix will be subset to remove these features. If used, Seurat::NormalizeData will be re-run.